2 resultados para data reduction by factor analysis

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undoubtedly, statistics has become one of the most important subjects in the modern world, where its applications are ubiquitous. The importance of statistics is not limited to statisticians, but also impacts upon non-statisticians who have to use statistics within their own disciplines. Several studies have indicated that most of the academic departments around the world have realized the importance of statistics to non-specialist students. Therefore, the number of students enrolled in statistics courses has vastly increased, coming from a variety of disciplines. Consequently, research within the scope of statistics education has been able to develop throughout the last few years. One important issue is how statistics is best taught to, and learned by, non-specialist students. This issue is controlled by several factors that affect the learning and teaching of statistics to non-specialist students, such as the use of technology, the role of the English language (especially for those whose first language is not English), the effectiveness of statistics teachers and their approach towards teaching statistics courses, students’ motivation to learn statistics and the relevance of statistics courses to the main subjects of non-specialist students. Several studies, focused on aspects of learning and teaching statistics, have been conducted in different countries around the world, particularly in Western countries. Conversely, the situation in Arab countries, especially in Saudi Arabia, is different; here, there is very little research in this scope, and what there is does not meet the needs of those countries towards the development of learning and teaching statistics to non-specialist students. This research was instituted in order to develop the field of statistics education. The purpose of this mixed methods study was to generate new insights into this subject by investigating how statistics courses are currently taught to non-specialist students in Saudi universities. Hence, this study will contribute towards filling the knowledge gap that exists in Saudi Arabia. This study used multiple data collection approaches, including questionnaire surveys from 1053 non-specialist students who had completed at least one statistics course in different colleges of the universities in Saudi Arabia. These surveys were followed up with qualitative data collected via semi-structured interviews with 16 teachers of statistics from colleges within all six universities where statistics is taught to non-specialist students in Saudi Arabia’s Eastern Region. The data from questionnaires included several types, so different techniques were used in analysis. Descriptive statistics were used to identify the demographic characteristics of the participants. The chi-square test was used to determine associations between variables. Based on the main issues that are raised from literature review, the questions (items scales) were grouped and five key groups of questions were obtained which are: 1) Effectiveness of Teachers; 2) English Language; 3) Relevance of Course; 4) Student Engagement; 5) Using Technology. Exploratory data analysis was used to explore these issues in more detail. Furthermore, with the existence of clustering in the data (students within departments within colleges, within universities), multilevel generalized linear models for dichotomous analysis have been used to clarify the effects of clustering at those levels. Factor analysis was conducted confirming the dimension reduction of variables (items scales). The data from teachers’ interviews were analysed on an individual basis. The responses were assigned to one of the eight themes that emerged from within the data: 1) the lack of students’ motivation to learn statistics; 2) students' participation; 3) students’ assessment; 4) the effective use of technology; 5) the level of previous mathematical and statistical skills of non-specialist students; 6) the English language ability of non-specialist students; 7) the need for extra time for teaching and learning statistics; and 8) the role of administrators. All the data from students and teachers indicated that the situation of learning and teaching statistics to non-specialist students in Saudi universities needs to be improved in order to meet the needs of those students. The findings of this study suggested a weakness in the use of statistical software applications in these courses. This study showed that there is lack of application of technology such as statistical software programs in these courses, which would allow non-specialist students to consolidate their knowledge. The results also indicated that English language is considered one of the main challenges in learning and teaching statistics, particularly in institutions where English is not used as the main language. Moreover, the weakness of mathematical skills of students is considered another major challenge. Additionally, the results indicated that there was a need to tailor statistics courses to the needs of non-specialist students based on their main subjects. The findings indicate that statistics teachers need to choose appropriate methods when teaching statistics courses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intestinal tract is exposed to a large variety of antigens such as food proteins, commensal bacteria and pathogens and contains one of the largest arms of the immune system. The intestinal immune system has to discriminate between harmless and harmful antigens, inducing tolerance to harmless antigens and active immunity towards pathogens and other harmful materials. Dendritic cells (DC) in the mucosal lamina propria (LP) are central to this process, as they sample bacteria from the local environment and constitutively migrate to the draining mesenteric lymph nodes (MLN), where they present antigen to naïve T cells in order to direct an appropriate immune response. Despite their crucial role, understanding the function and phenotype of LP DC has been hampered by the fact that they share phenotypic markers with macrophages (mφ), which are the dominant population of mononuclear phagocyte (MP) in the LP. Recent work in our own and other laboratories has established gating strategies and phenotyping panels that allow precise discrimination between intestinal DC and mφ using the mφ specific markers CD64 and F4/80. In this way four bona fide DC subsets with distinct functions have been identified in adult LP based on their expression of CD11b and CD103 and a major aim of my project was to understand how these subsets might develop in the neonatal intestine. At the beginning of my PhD, the laboratory had used these new methods to show that signal regulatory protein α (SIRPα), an inhibitory receptor expressed by myeloid cells, was expressed by mφ and most DC in the intestine, except for those expressing CD103 alone. In addition, mice carrying a non-signalling mutation in SIRPα (SIRPα mt) had a selective reduction in CD103+CD11b+ DC, a subset which is unique to the intestinal LP. This was the basis for the initial experiments of my project, described in Chapter 3, where I investigated if the phenotype in SIRPα mt mice was intrinsic to haematopoietic cells or not. To explore this, I generated bone marrow (BM) chimeric mice by reconstituting irradiated WT mice with SIRPα mt BM, or SIRPα mt animals with WT BM. These experiments suggested that the defect in CD103+CD11b+ DC was not replicated in DC derived from BM of SIRPα origin. However as this seemed inconsistent with other data, I considered the possibility that 18 the phenotype may have been lost with age, as the BM chimeric mice were considerably older than those used in the original studies of SIRPα function. However a comparison of DC subsets in the intestine of WT and SIRPα mt mice as they aged provided no conclusive evidence to support this idea. As these experiments did show age-dependent effects on DC subsets, in Chapter 4, I went on to investigate how the DC populations appeared in the intestine and other tissues in the neonatal period. These experiments showed there were few CD103+CD11b+ DC present in the LP and migratory DC compartment of the MLN in the neonate and that as this population gradually increased in proportion with age, there was a reciprocal decrease in the relative proportion of CD103-CD11b+ DC. Interestingly, most of the changes in DC numbers in the intestine were found during the second or third week of life when the weaning process began. To validate my findings that there were few CD103+CD11b+ DC in the neonate and that this was not merely an absence of CD103 upregulation, I examined the expression of CD101 and Trem-1, markers that other work in the laboratory had suggested were specific to the CD103+CD11b+ DC lineage. My work showed that CD101 and Trem-1 were co- expressed by most CD103+CD11b+ DC in small intestine (SI) LP, as well as a small subset of CD103-CD11b+ DC in this tissue. Interestingly, Trem-1 was highly specific to the SI LP and migratory DC in the MLN, but absent from the colon and other tissues. CD101 expression was also only found on CD11b+ DC, but showed a less restricted pattern of distribution, being found in several tissues as well as the SI LP. The relative timing of their development suggested there might be a relationship between CD103+CD11b+ and CD103-CD11b+ DC and this was supported by microarray analysis. I hypothesised that the CD103-CD11b+ DC that co-expressed CD101 and Trem-1 may be the cells that developed into CD103+CD11b+ DC. To investigate this I analysed how CD101 and Trem-1 expression changed with age amongst the DC subsets in SI LP, colonic LP (CLP) and MLN. The proportion of CD101+Trem-1+ cells increased amongst CD103+CD11b+ DC in the SI LP and MLN with age, while amongst CD103+CD11b+ DC in the CLP this decreased. This was not the same in CD103-CD11b+ DC, where CD101 and Trem-1 expression was more varied with age in all tissues. CD101 and Trem-1 were not expressed to any great extent on CD103+CD11b- or CD103-CD11b- DC. The phenotypic development of the 19 intestinal DC subsets was paralleled by the gradual upregulation of CD103 expression, while the production of retinoic acid (RA), as assessed by the AldefluorTM assay, was low early in life and did not attain adult levels until after weaning. Thus DC in the neonatal intestine take some time to acquire the adult pattern of phenotypic subsets and are functionally immature compared with their adult counterparts. In Chapter 5, I used CD101 and Trem-1 to explore the ontogeny of intestinal DC subsets in CCR2-/- and SIRPα mt mice, both of which have selective defects in one particular group of DC. The selective defect seen amongst CD103+CD11b+ DC in adult SIRPα mt mice was more profound in mice at D7 and D14 of age, indicating that it may be intrinsic to this population and not highly dependent on environmental factors that change after birth. The expression of CD101 and Trem-1 by both CD103+CD11b+ and CD103-CD11b+ DC was reduced in SIRPα mt mice, again indicating that this entire lineage was affected by the lack of SIRPα signalling. However there was also a generalised defect in the numbers of all DC subsets in many tissues from early in life, suggesting there was compromised development, recruitment or survival of DC in the absence of SIRPα signalling. In contrast to the findings in SIRPα mt mice, more CD103+CD11b+ DC co-expressed CD101 and Trem-1 in CCR2-/- mice, while there were no differences in the expression of these molecules amongst CD103-CD11b+ DC. This may suggest that CCR2+ CD103-CD11b+ DC are not the cells that express CD101 and Trem-1 that are predicted to be the direct precursors of CD103+CD11b+ DC. I also examined the expression of DC growth factor receptors on DC subsets from mice of different ages, but no clear age or subset- related patterns of the expression of mRNA for Csf2ra, Irf4, Tgfbr1 and Rara could be observed. Next, I investigated whether Trem-1 played any role in DC development. Preliminary experiments in Trem-1-/- mice show no differences between any of the DC subsets, nor were there any selective effects on individual subsets when DC development from Trem-1-/- KO and WT BM was compared in competitive chimeras. However these experiments were difficult to interpret due to viability problems and because I found an unexpected defect in the ability of Trem-1-/- BM to generate all DC, irrespective of whether they expressed Trem-1 or not. 20 The final experiments I carried out were to examine the role of the microbiota in driving the differentiation of intestinal DC subsets, based on the hypothesis that this could be one of the environmental factors that might influence events in the developing intestine. To this end I performed experiments in both antibiotic treated and germ free adult mice, both of which showed no significant phenotypic differences amongst any of the DC subsets. However the study of germ free mice was compromised by recent contamination of the colony and may not be the conclusive answer. Together the data in this thesis have shown that the population of CD103+CD11b+ DC, which is unique to the intestine, is not present at birth. These cells gradually increase in frequency over time and as this occurs there is a reciprocal decrease in the frequency of CD103-CD11b+ DC. Along with other results, this leads to the idea that there may be a linear developmental pathway from CD103-CD11b+ DC to CD103+CD11b+ DC that is driven by non-microbial factors that are located preferentially in the small intestine. My project indicates that markers such as CD101 and Trem-1 may assist the dissection of this process and highlights the importance of the neonatal period for these events.